Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37297466

RESUMO

Ceratocystis fimbriata Ellis & Halsted is the pathogen causing black rot in sweet potatoes that can lead to flavor change and toxin release. This study detected the volatile organic compounds (VOCs) of C. fimbriata-infected sweet potatoes in the early stages using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 55 VOCs were identified, including aldehydes, alcohols, esters, ketones, and others. The content of aldehydes and ketones showed a decreasing trend, while alcohols and esters showed an increasing trend. An increase in infection time elevated the content of malondialdehyde (MDA) and pyruvate, while the starch content decreased, the content of soluble protein initially increased, then decreased, and the activities of lipoxygenase (LOX), pyruvate decarboxylase (PDC), alcohol dehydrogenase (ADH), and phenylalanine ammonia-lyase (PAL) increased. The changes in VOCs were closely related to the content of MDA, starch, pyruvate, and the activities of LOX, PDC, ADH, and PAL. Sweet potatoes showed a good discrimination effect by principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) from 0 to 72 h. Twenty-five differential VOCs could be used as early-stage characteristic compounds of C. fimbriata-infected sweet potatoes for early disease monitoring.

2.
Crit Rev Food Sci Nutr ; 63(29): 9694-9715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35503432

RESUMO

Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including ß-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.


Assuntos
Dieta , Grão Comestível , Humanos , Grão Comestível/metabolismo , Inflamação/metabolismo , Flavonoides/metabolismo , Doença Crônica
3.
Metab Eng ; 74: 206-219, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36336175

RESUMO

Genistin is one of the bioactive isoflavone glucosides found in legumes, which have great nutraceutical and pharmaceutical significance. The market available isoflavones are currently produced by direct plant extraction. However, its low abundance in plant and structural complexity hinders access to this phytopharmaceutical via plant extraction or chemical synthesis. Here, the E. coli cell factory for sustainable production of genistin from glycerol was constructed. First, we rebuilt the precursor genistein biosynthesis pathway in E. coli, and its titer was then increased by 668% by identifying rate-limiting steps and applying an artificial protein scaffold system. Then de novo production of genistin from glycerol was achieved by functional screening and introduction of glycosyl-transferases, UDP-glucose pathway and specific genistin efflux pumps, and 48.1 mg/L of genistin was obtained. A further engineered E. coli strain equipped with an improved malonyl-CoA pathway, alternative glycerol-utilization pathways, acetyl-CoA carboxylase (ACC), and CRISPR interference (CRISPRi) mediated regulation produced up to 137.8 mg/L of genistin in shake flask cultures. Finally, 202.7 mg/L genistin was achieved through fed-batch fermentation in a 3-L bioreactor. This study represents the de novo genistin production from glycerol for the first time and will lay the foundation for low-cost microbial production of glucoside isoflavones. In addition, the multiphase workflow may provide a reference for engineering the biosynthetic pathways in other microbial hosts as well, for green manufacturing of complex natural products.


Assuntos
Escherichia coli , Isoflavonas , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Glicerol/metabolismo , Isoflavonas/metabolismo , Glucosídeos
4.
Antioxidants (Basel) ; 11(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36290760

RESUMO

Isoflavones are a class of major phenolic compounds, derived from soybeans, that possess unique therapeutic and biological properties. The possible mechanisms of isoflavone-mediated protection of neuronal PC12 cells against hypoxic damage was investigated in this study. Isoflavones showed potential neuroprotective effects by increasing cell viability, decreasing the level of reactive oxygen species (ROS), and inhibiting apoptosis and cell cycle arrest in cobalt chloride (CoCl2)-induced hypoxic damage. A Western blot analysis indicated that isoflavones decreased apoptosis by up-regulating the Bcl-xL protein and down-regulating the Bax protein. They further reduced the S-phase fraction of the cell cycle by down-regulating the p21 protein and up-regulating the cyclin A protein levels. Additionally, isoflavones activated Nrf2 protein translocation and inhibited the p38 MAPK and AKT-mTOR pathways. A molecular docking analysis further revealed that isoflavones displayed a potential competitive interaction with the Nrf2 protein for Keap1. Our findings suggest that isoflavones could be a potent neuroprotective phytochemical in soybeans and their products.

5.
Foods ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804741

RESUMO

Sweetpotato is prone to disease caused by C. fimbriata without obvious lesions on the surface in the early period of infection. Therefore, it is necessary to explore the possibility of developing an efficient early disease detection method for sweetpotatoes that can be used before symptoms are observed. In this study, sweetpotatoes were inoculated with C. fimbriata and stored for different lengths of time. The total colony count was detected every 8 h; HS-SPME/GC-MS and E-nose were used simultaneously to detect volatile compounds. The results indicated that the growth of C. fimbriata entered the exponential phase at 48 h, resulting in significant differences in concentrations of volatile compounds in infected sweetpotatoes at different times, especially toxic ipomeamarone in ketones. The contents of volatile compounds were related to the responses of the sensors. E-nose was combined with multiple chemometrics methods to discriminate and predict infected sweetpotatoes at 0 h, 48 h, 64 h, and 72 h. Among the methods used, linear discriminant analysis (LDA) had the best discriminant effect, with sensitivity, specificity, precision, and accuracy scores of 100%. E-nose combined with K-nearest neighbours (KNN) achieved the best predictions for ipomeamarone contents and total colony counts. This study illustrates that E-nose is a feasible and promising technology for the early detection of C. fimbriata infection in sweetpotatoes during the asymptomatic period.

6.
Front Nutr ; 9: 833555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350413

RESUMO

Soybean whey, as a byproduct of soybean industry, has caused considerable concern recently because of its abundant nutrients. To further utilize soybean whey, it was fermented with Weissella hellenica D1501, and the neuroprotective potency of this beverage was studied in the present work. The phenolic profile and antioxidant capacity of fermented soybean whey (FSBW) were analyzed. The neuroprotective effects were evaluated based on the hydrogen peroxide-stimulated oxidative damage model in a neural-like cell (PC12). Results demonstrated that soybean whey's phenolic contents and antioxidant activities were markedly improved after fermentation. Glycoside isoflavones were efficiently converted into aglycones by W. hellenica D1501. FSBW extract apparently increased cell viability, decreased reactive oxide species levels, and protected antioxidant enzymes in oxidative damage. Furthermore, FSBW effectively reduced apoptosis rate by inhibiting Bax protein and improving Bcl-2 and Bcl-xL proteins. FSBW ameliorated the cell cycle through the decrease of p21 protein and an increase of cyclin A protein. The findings of this study thus suggested that W. hellenica D1501-fermented soybean whey could potentially protect nerve cells against oxidative damage.

7.
Eur J Nutr ; 61(2): 779-792, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34553258

RESUMO

PURPOSE: Soy whey is a byproduct generated from the processing of several soybean products. Its valorization has continued to attract significant research interest in recent times due to the nutritional and bioactive potency of its chemical composition. Herein, the neuroprotective potency of a soy whey fermented by Cordyceps militaris SN-18 against hydrogen peroxide (H2O2)-induced oxidative injury in PC12 cells was investigated. METHODS: The phenolic compositions were analyzed by high-performance liquid chromatography. Antioxidant activities were assessed by ABTS•+ scavenging assay, DPPH radical scavenging assay, reducing power assay, and ferric reducing antioxidant power assay. The neuroprotective effects of fermented soy whey (FSW) were investigated based on the oxidative injury model in PC12 cells. RESULTS: FSW possessed higher total phenolic content and antioxidant activities compared with unfermented soy whey (UFSW) and that most of the isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. The extract from FSW exhibited a greater protective effect on PC12 cells against oxidative injury by promoting cell proliferation, restoring cell morphology, inhibiting lactic dehydrogenase leakage, reducing reactive oxygen species levels, and enhancing antioxidant enzyme activities compared with that from UFSW. Additionally, cell apoptosis was significantly inhibited by FSW through down-regulation of caspase-3, caspase-9, and Bax and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was attenuated by FSW through increasing cyclin A, CDK1 and CDK2, and decreasing p21 protein. CONCLUSION: Fermentation with C. militaris SN-18 could significantly improve the bioactivity of soy whey by enhancing the ability of nerve cells to resist oxidative damage.


Assuntos
Cordyceps , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Cordyceps/metabolismo , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Células PC12 , Ratos , Glycine max/metabolismo , Soro do Leite/metabolismo
8.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069784

RESUMO

Fermented soybean products have attracted great attention due to their health benefits. In the present study, the hypoxia-injured PC12 cells induced by cobalt chloride (CoCl2) were used to evaluate the neuroprotective potency of tofu fermented by Actinomucor elegans (FT). Results indicated that FT exhibited higher phenolic content and antioxidant activity than tofu. Moreover, most soybean isoflavone glycosides were hydrolyzed into their corresponding aglycones during fermentation. FT demonstrated a significant protective effect on PC12 cells against hypoxic injury by maintaining cell viability, reducing lactic dehydrogenase leakage, and inhibiting oxidative stress. The cell apoptosis was significantly attenuated by the FT through down-regulation of caspase-3, caspases-8, caspase-9, and Bax, and up-regulation of Bcl-2 and Bcl-xL. S-phase cell arrest was significantly inhibited by the FT through increasing cyclin A and decreasing the p21 protein level. Furthermore, treatment with the FT activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. Overall, FT offered a potential protective effect on nerve cells in vitro against hypoxic damage.


Assuntos
Cobalto/toxicidade , Mucorales/metabolismo , Fármacos Neuroprotetores/farmacologia , Alimentos de Soja , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fermentação , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Fenóis/química , Ratos
9.
Food Chem ; 339: 127849, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858383

RESUMO

Anthocyanin-rich purple highland barley has attracted great attention recently due to its health benefits in humans. The composition of the purified anthocyanin extract (PAE) from purple highland barley bran (PHBB) was characterized by liquid chromatography-mass spectrometry (LC-MS) with a high acylated anthocyanin profile. PAE exhibited high antioxidant activity and potential neuroprotective effects on cobalt chloride (CoCl2)-induced hypoxic damage in PC12 cells by maintaining cell viability, restoring cell morphology, inhibiting lactic dehydrogenase (LDH) leakage, reducing reactive oxygen species (ROS) levels, enhancing antioxidant enzyme activities, inhibiting cell apoptosis, and attenuating cell cycle arrest. Treatment cells (PC12 and U2OS) with PAE activated autophagy, indicating that autophagy possibly acted as a survival mechanism against CoCl2-induced injury. This study demonstrated that PAE from the PHBB was a high-quality natural functional food colorant and potentially could be used as a preventive agent for brain dysfunction caused by hypoxic damage.


Assuntos
Antocianinas/análise , Antioxidantes/química , Hordeum/química , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Cobalto/toxicidade , Hordeum/metabolismo , Humanos , Espectrometria de Massas , Fármacos Neuroprotetores/farmacologia , Células PC12 , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Ratos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo
10.
Artigo em Chinês | MEDLINE | ID: mdl-15643083

RESUMO

The plasmid p13W8 carrying antisense fragment of waxy gene and plasmid pCAMBIA1300 containing hpt gene were introduced into rice by Agrobacterium tumefaciens-mediated co-transformation, and 86 transgenic plants were obtained, 32 of them showed positive bands for antisense waxy gene by PCR analysis, the waxy-positive plant frequency is 37.2%. The segregation of antisense fragment of waxy gene and hpt gene was observed by PCR using hpt gene primers and waxy gene primers respectively in 29 T(1) population. One hundred and eighty-three plants containing only the antisense fragment of waxy gene were identified in 1 264 T(1) plants, the waxy-positive plant frequency is 14.4% (Table 1). The amylose content of seeds derived from transgenic plants with only the antisense fragment of waxy gene were determined, varying degrees of reduction in amylose content were found in some plants (Table 2). Four T(1) plants with reduced amylose content were selected through anther culture. Thirty-four anther culture plants seed normally, 23 of them were shown to contain only the antisense fragment of waxy gene (Table 3) by PCR analysis, and the amylose content was reduced to 5%-12% (Table 4). It took only one and half years to obtain the stably inherited markerless transgenic rice with reduced amylose content by co-transformation and anther culture technique.


Assuntos
Amilose/metabolismo , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética , Agrobacterium tumefaciens/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...